
Symmetry techniques for the Al-Salam - Chihara polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 3107

(http://iopscience.iop.org/0305-4470/30/9/021)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 3107–3114. Printed in the UK PII: S0305-4470(97)80081-9

Symmetry techniques for the Al-Salam–Chihara
polynomials

Roberto Floreanini†, Jean LeTourneux‡ and Luc Vinet‡
† Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Dipartimento di Fisica Teorica,
Universit̀a di Trieste, Strada Costiera 11, 34014 Trieste, Italy
‡ Département de Physique and Centre de Recherches Mathématiques, Université de Montŕeal,
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Abstract. An algebraic interpretation for the Al-Salam–Chiharaq-orthogonal polynomials is
presented. Using an explicit realization in terms of divided difference operators, their symmetry
q-algebra is determined and studied. This algebraic structure allows one to derive a new
expansion formula for these polynomials.

1. Introduction

The use of algebraic methods in the study of basic orq-orthogonal polynomials [1, 2]
has proved very useful. Many formulae and identities involving these polynomials are
direct consequences of the ‘symmetry’ algebras they possess. Indeed, most families of
q-orthogonal polynomials are found to be basis vectors for irreducible representations of
suitableq-deformations of classical Lie algebras [3–11].

Among the families of basic polynomials, of particular interest are those that are
orthogonal with respect to a continuous measure. For specific choices of the parameters,
these are all suitable limits of the Askey–Wilson polynomials, the most general class of
orthogonal polynomials that is known [2, 12].

So far, only a small number of theseq-polynomials have been given an algebraic
interpretation: they areq-generalizations of the classical Jacobi, ultraspherical and Hermite
polynomials [8–11]. In this paper we present a symmetry interpretation for a family of
continuousq-orthogonal polynomials that does not have a classical analogue: the so-called
Al-Salam–Chihara polynomials [2]. As discussed in section 2, the symmetry algebra for
these polynomials is found to be an inhomogeneousq-algebra.

As an example of the application of these symmetry techniques, in section 3 a new
expansion formula for the Al-Salam–Chihara polynomials will be algebraically derived. It
is similar to the classical Fourier–Gegenbauer expansion relation for the Jacobi polynomials
[13].

The basic orthogonal polynomials can be expressed in terms of generalized
hypergeometric functions [1]:

rφs

(
a1, a2, . . . , ar
b1, . . . , bs

∣∣∣∣q; z) = ∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n [(−1)nqn(n−1)/2]1+s−rzn (1.1)
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where

(a1, a2, . . . , ak; q)α = (a1; q)α(a2; q)α . . . (ak; q)α (1.2a)

and

(a; q)α = (a; q)∞
(aqα; q)∞ (a; q)∞ =

∞∏
k=0

(1− aqk) |q| < 1. (1.2b)

Indeed, from the definition of theq-shifted factorial(a; q)α, one immediately sees that the
seriesrφs terminates if one of the parametersai , i = 1, . . . , r, is equal toq−n, with n a
positive integer.

The Al-Salam–Chihara polynomialsQn(x; a, b|q) are two-parameter orthogonal
polynomials in the variablex = cosθ , given explicitly by [2]:

Qn(x; a, b|q) = (ab; q)
an

3φ2

(
q−n, a eiθ ,

ab,

a e−iθ

0

∣∣∣∣q; q) (1.3a)

= einθ (b e−iθ ; q)n 2φ1

(
q−n, a eiθ

b−1q1−n eiθ

∣∣∣∣q; qb−1 e−iθ

)
. (1.3b)

They are a particular case of the four-parameter Askey–Wilson polynomials [12]:

pn(x; a, b, c, d|q) = (ab, ac, ad; q)n
an

4φ3

(
q−n, abcd qn−1,

ab,

a eiθ ,

ac,

a e−iθ

ad

∣∣∣∣q; q) . (1.4)

When the four parametersa, b, c, d are real, the Askey–Wilson polynomials are orthogonal
over the interval 0< θ < π with respect to the continuous measure

w(cosθ; a, b, c, d) =
∣∣∣∣ (e2iθ ; q)∞
(a eiθ , b eiθ , c eiθ , d eiθ ; q)∞

∣∣∣∣2. (1.5)

The orthogonality of the Al-Salam–Chihara polynomials follows from this property.
Note that asq → 1−, the polynomialsQn(x; a, b|q) become the simple monomials

(2x − a − b)n. Other more interesting limits involve setting one or both parametersa

and b to zero. In these cases the polynomialsQn(x; a, b|q) reduce toq-generalizations
of the classical Hermite polynomials, the so-called continuous bigq-Hermite polynomials
(b = 0):

Hn(x; a|q) = a−n3φ2

(
q−n, a eiθ ,

0,
a e−iθ

0

∣∣∣∣ q; q) (1.6)

and the continuousq-Hermite polynomials(a = b = 0)

Hn(x|q) = einθ
2φ0

(
q−n, 0
−

∣∣∣∣q; qn e−2 iθ

)
. (1.7)

An algebraic interpretation for theseq-orthogonal polynomials has been presented in [8–10].
In the following, we shall show that a similar interpretation also holds for the Al-Salam–
Chihara polynomials.

2. Algebraic interpretation

The mathematical structure that is at the basis of the algebraic interpretation of Al-Salam–
Chihara polynomials is a generalized Euclideanq-algebraGq . We shall see that these
polynomials occur as basis vectors of an irreducible representation ofGq . This algebraic
model is realized in terms of difference operators acting on functions of the three variablest ,
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s andx = 1
2(z+1/z), with z = eiθ . The building blocks are the following fourq-difference

operators [14]:

τ = 1

z − z−1
(T 1/2
z − T −1/2

z ) (2.1a)

τ ? = q−1/2

z − z−1

[
1

z2
(1− q−1/2zT

1/2
t )(1− q−1/2zT 1/2

s )T 1/2
z

−z2

(
1− q

−1/2

z
T

1/2
t

)(
1− q

−1/2

z
T 1/2
s

)
T −1/2
z

]
(2.1b)

µ = 1

z − z−1

[
− 1

z
(1− q−1/2zT

1/2
t )(1− q−1/2zT 1/2

s )T 1/2
z

+z
(

1− q
−1/2

z
T

1/2
t

)(
1− q

−1/2

z
T 1/2
s

)
T −1/2
z

]
(2.1c)

µ? = 1

z − z−1

(
− 1

z
T 1/2
z + zT −1/2

z

)
. (2.1d)

In writing these expressions use has been made of theq-dilatation operatorT αw , acting as
follows on any functionf (w) of the generic variablew: T αwf (w) = f (qαw), α being any
real number.

Let us now consider the following generators:

A+ = − ts

1− q τ B+ = ts µ?

A− = 1

ts
τ ? B− = 1

ts(1− q)µ

K1 = T 1/2
t K2 = T 1/2

s

Q1 = t2 Q2 = s2

P = 2x

R1 = t

s

1

(z − z−1)

[
− 1

z
(1− q−1/2zT 1/2

s )T
1/2
t T 1/2

z + z
(

1− q
−1/2

z
T 1/2
s

)
T

1/2
t T −1/2

z

]
R2 = s

t

1

(z − z−1)

[
− 1

z
(1− q−1/2zT

1/2
t )T 1/2

s T 1/2
z + z

(
1− q

−1/2

z
T

1/2
t

)
T 1/2
s T −1/2

z

]
. (2.2)

Note that the last two operators are not independent from the others. Indeed, one can check
that the following two identities hold:

Q2R1 = (B+ − q1/2(1− q)A+K2)K1 (2.3a)

Q1R2 = (B+ − q1/2(1− q)A+K1)K2. (2.3b)

Nevertheless, they are of great help in writing down explicitly the relations characterizing
the q-algebraGq that the operators (2.2) generate. In fact, one finds

A−A+ − qA+A− = 1 [B−, B+] = q−1K1K2

K1A± = q±1/2A±K1 K1B± = q±1/2B±K1

PA+ − q−1/2A+P = −q−1B+ PA− − q1/2A−P = −q−1/2(1− q)2B−
PB+ − q1/2B+P = (1− q)2A+ PB− − q−1/2B−P = q−1/2A−
A+B+ = q−1/2B+A+ A−B− = q1/2B−A−
A+B− = q−1/2B−A+ A−B+ = q1/2B+A−
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[A−,Q1] = −q−1(1− q)R1 B−Q1− qQ1B− = R1K
−1
1

A±R1 = q∓1R1A± B±R1 = q∓1/2R1B±
Q1R1 = q−1R1Q1 Q1R2− q−1R2Q1 = −q−1(1− q)B+K2

[A+,Q1] = 0 [B+,Q1] = 0

R1P − q1/2PR1 = (1− q)(R1− A−Q1)K1 [P,Q1] = 0

[R1, R2] = 0 [Q1,Q2] = 0

[K1,K2] = 0 [K1, P ] = 0

K1Q1 = qQ1K1 [K1,Q2] = 0

K1R1 = q1/2R1K1 K1R2 = q−1/2R2K1 (2.4)

plus the relations that are obtained by letting 1↔ 2.
This q-algebra contains various interestingq-subalgebras. The set of operators{A+,

A−,K1} and {B+, B−,K1K2} generate two different forms of theq-oscillator algebra.
Furthermore,A+, B+ q-commute and are ‘rotated’ one into the other byP ; these three
generators form, therefore, aq-deformation of the two-dimensional Euclidean algebra.
The same is true for the set{A−, B−, P }. Additional q-subalgebras involve the operators
{A−,Q1, R1}, {B−,Q1, R1K

−1
1 } and{Q1, R2, B+K2}; they all constituteq-deformations of

certain contractions ofsl(2).
Note that in the limitq → 1, the algebra (2.4) greatly simplifies, since most of the

operators trivialize. Explicitly, by writingKi = qJi/2, i = 1, 2, one obtains:

A+ → ts

2
∂x B+ → ts

A− → 2

ts
(1− x) B− → 1

ts

[
(x − 1)∂x + 1

2
(t∂t + s∂s)− 1

]
J1→ t∂t J2→ s∂s

R1→ t/s R2→ s/t (2.5)

while P , Q1 andQ2 remain unaffected. In the same limit, the non-vanishing commutators
are

[A−, A+] = 1 [B−, B+] = 1

[J1, A±] = ±A± [J1, B±] = ±B±
[P,A+] = −B+ [P,B−] = A−
[J1,Q1] = 2Q1 [B−,Q1] = R1

[J1, R1] = R1 [J1, R2] = −R2 (2.6)

and the ones that are obtained from these with the exchange 1↔ 2.
An irreducible representation for the algebraGq in (2.4) can be obtained by letting the

operators (2.2) act on the following basis functions:

f (α,β)n (x, t, s) = tαsβQn(x; qα/2, qβ/2|q). (2.7)

One can check that the following relations hold:

A+f (α,β)n = q−n/2 (1− q
n)

(1− q) f
(α+1,β+1)
n−1 A−f (α,β)n = −q−(n+1)/2f

(α−1,β−1)
n+1

B+f (α,β)n = q−n/2f (α+1,β+1)
n B− f (α,β)n =q−n/2 (1− q

α/2+β/2+n−1)

(1− q) f (α−1,β−1)
n
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K1f
(α,β)
n = qα/2f (α,β)n K2f

(α,β)
n = qβ/2f (α,β)n

Pf (α,β)n = f (α,β)n+1 + qn(qα/2+ qβ/2)f (α,β)n + (1− qn)(1− qα/2+β/2+n−1)f
(α,β)

n−1

Q1f
(α,β)
n = f (α+2,β)

n − qα/2(1− qn)f (α+2,β)
n−1

Q2f
(α,β)
n = f (α,β+2)

n − qβ/2(1− qn)f (α,β+2)
n−1

R1f
(α,β)
n = q(α−n)/2f (α+1,β−1)

n R2f
(α,β)
n = q(β−n)/2f (α−1,β+1)

n . (2.8)

Note that the action ofP reproduces the three-term recurrence relation for the Al-Salam–
Chihara polynomialsQn(x; a, b|q),
2xQn(x; a, b|q) = Qn+1(x; a, b|q)+ qn(a + b)Qn(x; a, b|q)

+(1− qn)(1− abqn−1)Qn−1(x; a, b|q) (2.9)

while the action of the two operatorsQ1 andQ2 is a consequence of the following two
identities:

Qn(x; a, b|q) = Qn(x; qa, b|q)− a(1− qn)Qn−1(x; qa, b|q) (2.10a)

Qn(x; a, b|q) = Qn(x; a, qb|q)− b(1− qn)Qn−1(x; a, qb|q). (2.10b)

These can be proved by noting that both sides of formulae (2.10) satisfy the recurrence
relation (2.9), with the same initial conditions.

A simple computation shows that the relations (2.8) reproduce the algebra (2.4). Also
note that by taking suitable combinations of the operators (2.2) one can move up and down
in all possible ways the parametersn, α andβ characterizing the basis functions{f (α,β)n }. In
view of this, the algebra (2.4) can be called the symmetry algebra of the Al-Salam–Chihara
polynomials. In other words, the set of relations (2.8) constitutes a complete description of
these polynomials.

3. Expansion formula

Many properties that the Al-Salam–Chihara polynomials satisfy can be obtained in a purely
algebraic way using the symmetry model (2.8). As an example, we shall now derive an
expansion formula for these polynomials involving aq-generalization of the exponential
function. Variousq-exponential functions have been introduced in the literature [1, 15, 16].
The one that is naturally connected with the families of continuousq-orthogonal polynomials
is the eigenfunction of the divided-difference operatorτ in (2.1a). In its most general form,
it depends on two variables,x = 1

2(z + 1/z), z = eiθ andy = 1
2(w + 1/w), w = eiϕ , and

on a parameterω [16, 17]:

Eq(x, y;ω) = (q1/2ω2; q2)∞
(q3/2ω2; q2)∞

∞∑
k=0

qk(k+1)/4

(q; q)k (−1)k

×
(
− zwq(1−k)/2,−w

z
q(1−k)/2; q

)
k

(
ω

w

)k
. (3.1)

This function satisfies the following characteristic properties [16]:

Eq(x, y;ω) = Eq(y, x;ω) (3.2a)

τxEq(x, y;ω) = ωEq(x, y;ω) (3.2b)

Eq(0, 0;ω) = 1 (3.2c)

Eq(x, y;ω) = Eq(x, 0;ω)Eq(0, y;ω). (3.2d)
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(For the sake of clarity, in(3.2b) we have writtenτx for the operator defined in(2.1a) to
explicitly indicate that it acts on the variablex; due to(3.2a), a similar relation holds forτy .)
While the first three properties above are a direct consequence of identities satisfied by the
q-shifted factorials, the last one is non-trivial and can be given an algebraic interpretation.

This interpretation is based on the symmetry algebra of theq-Hermite polynomials (1.7),
the zero-parameter limit of the Al-Salam–Chihara polynomials. In this limiting case, the
algebra (2.4) essentially reduces to theq-Euclidean algebra generated by the operatorsA+,
B+ andP acting on the basis functionsfn(x) = Hn(x|q). The functionEq(x, y;ω), i.e.
the q-exponential of the operatorP/2 ≡ x, depending parametrically ony andω, can be
expressed in terms of the basis functions{fn(x)}:

Eq(x, y;ω) =
∞∑
k=0

Uk(y;ω)fk(x). (3.3)

Indeed,Eq(x, y;ω) can be thought of as acting on the vectorf0 ≡ 1. Applying the operator
A+ = τx/(q−1) to both sides of this equation, one obtains the following recurrence relation
for the coefficientsUk:

ωUk(y;ω) = −q−(k+1)/2(1− qk+1) Uk+1(y;ω). (3.4)

The dependence on the indexk is then fixed, up to an arbitrary function,

Uk(y;ω) = qk(k+1)/4

(q; q)k (−1)kωk U0(y;ω) (3.5)

so that

Eq(x, y;ω) = U0(y;ω)
∞∑
k=0

qk(k+1)/4

(q; q)k (−1)kωk Hk(x|q). (3.6)

Setting x = 0 allows one to determine the functionU0: Eq(0, y;ω) =
U0(y;ω)(q3/2ω2; q2)∞. Substituting this result back into (3.6) and recalling(3.2c), one
first finds fory = 0 the expansion formula [8, 17]:

Eq(x, 0;ω) = 1

(q3/2ω2; q2)∞

∞∑
k=0

qk(k+1)/4

(q; q)k (−1)kωk Hk(x|q) (3.7)

and hence the identity(3.2d).
An expansion formula similar to (3.7) also holds for the Al-Salam–Chihara polynomials,

and it can be derived using model (2.8) for theq-algebraGq . One starts by observing that
the operatorsK1 andK2 are diagonal on the basis{f (α,β)n } and that both commute with
P . Therefore, theq-exponentialEq(x;ω) ≡ Eq(x, 0;ω) of the generatorP/2 acting on the
function f (α,β)0 (x, t, s) = tαsβ can be expressed as

Eq(x;ω)f (α,β)0 (x, t, s) =
∞∑
n=0

W(α,β)
n (ω)f (α,β)n (x, t, s). (3.8)

No summation overα andβ occurs because the left-hand side is an eigenfunction ofK1

andK2, and the same must be true for the right-hand side.
The matrix elementsW(α,β)

n (ω) can be determined by solving the following recurrence
relations,

ωW(α+1,β+1)
n (ω) = −q−(n+1)/2(1− qn+1)W

(α,β)

n+1 (ω) (3.9a)

W(α+2,β)
n (ω) = W(α,β)

n (ω)− qα/2(1− qn+1)W
(α,β)

n+1 (ω) (3.9b)

W(α,β+2)
n (ω) = W(α,β)

n (ω)− qβ/2(1− qn+1)W
(α,β)

n+1 (ω) (3.9c)
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that are obtained by acting with the operatorsA+, Q1 andQ2 on both sides of (3.8), and
using (2.8).

In solving these relations it proves convenient to rewriteW(α,β)
n (ω) in the following

product form:

W(α,β)
n (ω) = wn(ω)g(q(α+n)/2, q(β+n)/2;ω). (3.10)

As a consequence,(3.9a) reduces to (3.4),

wn+1(ω) = −q
(n+1)/2ω

1− qn+1
wn(ω) (3.11)

which fixeswn(ω) up to a functionw0(ω):

wn(ω) = qn(n+1)/4

(q; q)n (−1)nωn w0(ω). (3.12)

Introducing for simplicity the new variablesu = q(α+n)/2 and v = q(β+n)/2, n fixed, the
remaining two conditions in (3.9) become

(Du + q1/2ωT 1/2
u T 1/2

v )g(u, v;ω) = 0 (3.13a)

(Dv + q1/2ωT 1/2
u T 1/2

v )g(u, v;ω) = 0 (3.13b)

whereDz ≡ (1/z)(1− Tz) is another standard definition of aq-derivative. The solution of
(3.13) can be expressed in terms of Carlitz’sq-Hermite polynomials [3, 18]:

hn(z; q) =
n∑
k=0

(q; q)n
(q; q)k(q; q)n−k z

k. (3.14)

These polynomials are orthogonal on the unit circle,z = eiθ , and satisfy the condition
Dzh(z; q) = (1− qn)hn−1(z; q). Using this property, one can check that

g(u, v;ω) =
∞∑
k=0

qk(k+1)/4

(q; q)k (−1)khk(u/v)(vω)
k (3.15)

solves (3.13). (An arbitrary function ofω should also appear in the solution (3.15); it has
been absorbed inw0(ω).) The functiong in (3.15) can also be expressed in terms of the
q-exponentialEq ; indeed, it is not hard to show that

g(u, v;ω) = (q3/2uvω2; q2)∞ Eq [ 1
2((u/v)

1/2+ (v/u)1/2);ω√uv]. (3.16)

It remains to fix the functionw0(ω). This can be easily done by lettingqα = qβ = 0, so
that (3.8) must coincide with the expansion (3.7) for the continuousq-Hermite polynomials.
(This condition has already been implicitly used in the choice of the solution in (3.15).) In
this way, one obtainsw0(ω) = 1/(q3/2ω2; q2)∞. Putting all the pieces together, one finally
obtains the following expansion formula:

Eq(x;ω) = 1

(q3/2ω2; q2)∞

∞∑
n=0

qn(n+1)/4

(q; q)n (−1)nωn

×g(q(α+n)/2, q(β+n)/2;ω)Qn(x; qα/2, qβ/2|q
)
. (3.17)

This is the analogue for the Al-Salam–Chihara polynomials of the Fourier–Gegenbauer
relation that involves the expansion of a plane wave in terms of Jacobi polynomials
[11, 13, 19]. Note that when eitherqα or qβ vanishes, (3.17) reduces to the expansion
formula for the continuous bigq-Hermite polynomials presented in [9].

The constructive derivation of the identity (3.17) using symmetry techniques clearly
illustrates the power of the algebraic approach to the theory ofq-orthogonal polynomials.
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It is of interest to study the properties of other families ofq-continuous polynomials in an
analogous fashion, and in particular to determine the symmetry algebra of the Askey–Wilson
polynomials. Work along these lines is in progress.
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